Phosphorescence of Group IVB metal complexes

G. V. Loukova* and V. A. Smirnov

Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 (096) 524 4401. E-mail: gloukova@cat.icp.ac.ru

An interest in chemistry of Group IVB metals (Ti, Zr, and Hf)¹ especially increased recently due to their wide use, including catalysis.²

In this work, we describe for the first time the phosphorescence properties of isostructural molecules containing zirconium(IV) and hafnium(IV) and present the results of comparative examination of the low-energy excited states in the triad of Group IVB metals for their π -complexes $Cp_2M^{IV}Cl_2$ [$Cp = \eta^5 - C_5H_5$; M = Ti (1), Zr (2), Hf (3)] (Table 1). The compounds under study (content of the main substance ≥ 98 , Aldrich) were purified by known procedures, 3,4 and their concentrations in solutions were $10^{-5} - 10^{-4}$ mol L^{-1} . Spectral measurements were carried out according to the previously described procedure.

In homologs 1–3, the low-energy absorption in the UV-visible region corresponding to the Franck-Condon charge transfer from the π -ligand to the metal⁶

(HOMO→LUMO4) results in the high-lying excited states in which the metal ion is formally reduced: $M^{4+}Cp_2{}^{2-} \rightarrow M^{3+}Cp_2{}^{-*}.$ The data on intense emission allow the estimation of the position of the lowest excited state in 1-3. The quantum yield of the low-temperature (77 K) emission (determined by comparison with those for anthracene and Rhodamine B) is high: ~1.0 (2), 1.0 (3), and 0.09 (1). The radiation lifetimes are of millisecond range, which indicates the forbidden radiation transition of the $T_1 \rightarrow S_0$ type. The phosphorescence spectra virtually coincide with the absorption spectra and are independent of the wavelength of the exciting light. The radiation lifetime (λ_{exc} = 337 nm) of $T_1 \rightarrow S_0$ transitions in the isostructural triad depends strictly on the metal nature: Zr, ~2 ms (longest); Ti, ~0.8 ms; and Hf, ~0.3 ms (shortest). The excitation and phosphorescence spectra of complexes 2 and 3 are substantially broadened as compared to those of 1. The phosphores-

Table 1. Comparative characterization of absorption and luminescence in isostructural complexes of Group IVB metals

Com- pound	Matrix	LMCT*-absorption (20 °C)		Emission (77 K)				Refs.
		cm ⁻¹	ε/M cm ⁻¹	max/cm ⁻¹	$(0-0)/cm^{-1}$	τ/ms	ф	
	Toluene	25600	_	15400	16800	0.80	0.09	**
		19450	_					
Cp ₂ TiCl ₂ Dichloromethane		25510	2300	_		_	_	7
		19080	193					
	EtOH: MeOH	_	_	14880	16460	0.73	_	7
	MC	_	_	_	_	0.80	_	**
	3-MH	35100	_	21700	24300	2.00	1.0	**
		30200	_					
Cp ₂ ZrCl ₂	Toluene	34500	_	21800	24300	1.70	_	**
		30100	950					
	MC		_			1.50	_	**
	MC	_	_	22120	_	_	_	8
	3-MH	38400	_	23300	26100	0.30	1.0	**
		32600	_					
Cp ₂ HfCl ₂	Toluene	32500	1200	23550	26300	0.30	_	**
	MC	_	_	_	_	0.30	_	**
	MC	_	_	23420	_	_	_	8

Note. MC is microcrystalline sample; 3-MH is 3-methylheptane.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 313-314, February, 2001.

^{*} Ligand-to-metal charge transfer.

^{**} This work.

cence spectra exhibit a new fine structure as a broad maximum for molecules $\mathbf{2}$ and $\mathbf{3}$ and shoulders in $\mathbf{1}\mathbf{-3}$.

The authors are grateful to A. E. Shilov for discussion of the problem.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 00-15-97367) and the Haldor Topsøe A/S (Denmark).

References

- P. C. Wailes, R. S. P. Coutts, and H. Weigold, Organometallic Chemistry of Titanium, Zirconium, and Hafnium, Academic Press, New York, 1974.
- 2. W. Kaminsky, J. Chem. Soc., Dalton Trans., 1998, 1413.
- 3. G. V. Loukova, O. N. Babkina, T. A. Bazhenova, N. M. Bravaya, and V. V. Strelets, *Izv. Akad. Nauk, Ser. Khim.*,

- 2000, 59 [Russ. Chem. Bull., Int. Ed., 2000, 49, 60 (Engl. Transl.)].
- G. V. Loukova and V. V. Strelets, J. Organomet. Chem., 2000, 606, 2, 203; G. V. Loukova and V. V. Strelets, Izv. Akad. Nauk, Ser. Khim., 2000, 1043 [Russ. Chem. Bull., Int. Ed., 2000, 49, 1037].
- V. A. Smirnov and S. B. Brichkin, Chem. Phys. Lett., 1982, 87, 548.
- E. Vitz, P. J. Wagner, and C. H. Brubaker, Jr., *J. Organomet. Chem.*, 1974, 107, 301; M. R. M. Bruce, A. Kenter, and D. R. Tyler, *J. Am. Chem. Soc.*, 1984, 106, 639.
- 7. J. W. Kenney, III, D. R. Boone, D. R. Striplin, Y. H. Chen, and K. B. Hamar, *Organometallics*, 1993, **12**, 3673.
- 8. V. W.-W. Yam, G.-Z. Qi, and K.-K. Cheung, *Organometallics*, 1998, **17**, 5448.

Received August 23, 2000; in revised form December 4, 2000